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Abstract. The multiscaling SINCIUX of the cluster-mass distribution is investigated in a 
simple cluster-duster aggregation model with injection in which the volume (or size) of 
clusters is infinitesimal but the mass of clusten is finite. The model is consistent with the 
Scheidegger river network model. It is shown that the panition function Z(q) -  
XQ-, M(1, n)' scales as Z(q) = I ~ ( ~ '  where M(1, n) is the mass ofthe clwtcr on the site n 
at the time I and the summation ranges over all sites. In the limit of a sufficiently large 
q . l ( q ) / q  (or J C ( q ) / J q )  gives the exponent y of growth of a typical cluster. The exponent 
also equals to the fractal dimension d, = 1.5 of a typical river in the Scheidegger river 
network model. The f-e spectrum of the normalized mass distribution is derived. It is 
found that the growth exponent of a typical cluster is exactly given by y = 1 - a(m). The 
multiscaling of the cluster-mass distribution has a characteristic property for the simple 
cluster-cluster aggregation system. 

N 

Recently, there has been increasing interest in fractal structures of growth processes 
such as the cluster-cluster aggregation (CCA) model, the diffusion-limited aggregation 
(DLP.) mode!, !he bz!!istic deposi!ion mode! and !he river ne!wnrk mnde! [!=!!I. The 
CCA model presents the prototype of colloidal aggregation, smoke aggregation and 
droplet coalescence [9] .  In the CCA model, there is the dynamic scaling of the cluster-size 
distribution [12]. The DLA model presents a prototype of the pattern formation of 
diffusive systems including electrodeposition, crystal growth, viscous fingering and 
bacterial colonies [ 131. The ballistic deposition model provides a basis for understand- 
ing deposition processes used to prepare a wide variety of thin-film devices [14]. 
Branched river networks are among nature's most common patterns, spontaneouslj 
producing fractal structure [ l l ,  IS]. Some models have been constructed for the 
evolution of an entire drainage network [15,16]. 

Very recently, the multifractal properties of the DLA have attracted considerable 
attention [17]. It has become clear that the DLA aggregate cannot be fully characterized 
by its fractal dimensionality. In order to characterize the aggregate further, it  is necessary 
to derive the multifractal structure of the growth probability distribution. From the 
multifractality, one can obtain detailed information on the capability of each perimeter 
site to grow and, therefore, more information on the surface structure [ 17-22]. 

In this letter, we investigate the scaling structure of the cluster-mass distribution 
in a simple cluster-cluster aggregation model with injection. In the CCA model, the 
volume (or size) of clusters is infinitesimal but the mass of clusters is finite. The model 
is equivalent to the Scheidegger river network model [231. It has been known that the 
cumulative cluster-mass distribution P ( 3 M )  shows the following power-law 
asymptotic distribution: 

P( P M )  = M-1'3 (1) 

0305-4470/92/150955+05$04.50 @ 1992 IOP Publishing Ltd L955 



L956 Letter to the Editor 

where M indicates the mass of a cluster [23]. The power-law distribution of the 
cluster-mass distribution is satisfied for a sufficiently large mass M. However, we will 
show that the cluster-mass distribution has the multiscaling structure. 

First, we introduce the simple CCA model with injection [23]. The clusters with 
integer mass with an infinitesimal volume (or size) are placed on each site of the 
one-dimensional lattice and they coalesce by random-walk processes with discrete time 
steps. The time evolution of the model is defined by the following procedure: at the 
beginning of each time step, there is a single particle on every site of the lattice. All 
of them independently jump to nearest-neighbour sites according to the given probabil- 
ity 4. When two clusters collide at a site after the jump, they coalesce to form a new 
cluster with a conserved mass. Then, a single particle with unit mass is added to every 
site. Thus the evolution of one time step is completed and we repeat this procedure. 
As a result, there is non-zero integer mass on every site at every time. The mass M( 1, n )  
of the cluster on the nth site at time t satisfies the stochastic equation 

M ( t + 1, n ) = w( t, n, n) M (  t, n ) + w ( t, n + 1, n ) M( 1, n + 1) + 1 (2) 

where w(r, n, m) denotes the realization that the cluster on the nth site jumps to the 
mth site at time t and is given by 

with probability 4 
with probability 4. w ( t , n , m ) =  

We perform the computer simulation of the simple CCA model for the one- 
dimensional lattice of N = 100-500. By the use of (2), the mass of cluster on each site 
is calculated under a periodic lateral boundary condition. Figure 1 shows the typical 
cluster-mass distributions for 1 = 20, 30 and 40 (the number of sites N = 100). The 
partition function Z(q) is defined as the moments of the cluster mass 

N 

Z(q)-  1 M ( t ,  n)' (4) 
"-1 

where the summation ranges over all sites on the one-dimensional lattice. We study 
the scaling behaviour of the partition function (4). Figure 2 shows the log-log plot of 
the moments against the time 1. It is confirmed that for sufficiently large t the partition 
function scales with time t as 

Z(q) = tC(Q). (5) 

Figure 3 shows the ('(9) behaviour against q. The scaling behaviour cannot be character- 
ized by a single gap scaling. Since the total number of clusters equals to the size N 
of the lattice, the exponent ((0) gives ((0) = 0. If q < 0, ( (4 )  < 0. If q > 0, (( q)  > 0. The 
exponent ('( 1) gives c( 1) = 1 since the sum of mass over all clusters is proportional to 
the time 1. For a sufficiently large q, ( ' ( q ) / q  or J ( ' ( q ) / J q  gives the scaling exponent of 
largest growth rate of a cluster. It represents the scaling exponent y of growth of a 
typical cluster. The exponent y, is given by y =  1.50*0.02. ( ' (q ) /q  is related to the 
exponent of the growth rate. The growth rate of the cluster increases with the cluster 
mass. The origin of the multiscaling ( 5 )  is due to the increase of the growth rate with 
the cluster mass. The coalescence process between clusters may be represented by an 
underlying multiplicative process. 

In order to characterize the multifractality of the cluster-mass distribution, it is 
convenient to normalize the cluster mass. We define the normalized partition 
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Figure 1. The typical clustermass distributions generated by the simple CCA model with 
injection. This run was done in a one-dimensional lattice N = 100 under a periodic lateral 
boundary condition for an illustration. The height of lines is proportional to the cluster 
mass. The cluster-mass distribution on the one-dimensional lattice at the time ( a )  I =20. 
( b )  t = 3 O  and ( e )  1=40. 

I 10 IM) 
t 

Flgure2. The lag-lag plot ofthe moments (4) against 
time I showing scaling behaviour. 

Flgure3. The behaviour ofthescaling exponent l ( q )  
against q. 
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function Zo(q) 

For a sufficiently large I, the normalized partition function scales as 

Z,(q) = 1- ' (q) .  (7) 

Figure 4 shows the plot of exponent ~ ( q )  against q. With the Legendre transformation 
of T ( q ) ,  we obtain thef-a  spectrum 

f (q)=qa(q) - . r (q)  (8) 

where a ( q )  = J T ( q ) / J q  is the variable conjugate to q. Figure 5 shows thef-a spectrum. 
The f-a spectrum has a characteristic property of the cluster-mass distribution in the 
simple CCA model. The maximum valuef(0) o f f ( a )  is given by 

f ( 0 )  = b(0) =o. (9) 

The maximum value of a gives the scaling exponent of the minimum fraction of the 
ciusier mass. T i e  minimum vaiue of a gives ihe scaiing exponeni of ihr maximum 
fraction of the cluster mass. The minimum value a(m) is exactly related to the growth 
exponent y of a typical cluster 

where In Z (  I)/ln f = 1. The minimum value a(m) obtained from the simulation is given 
by 0.49+0.02. We obtain the growth exponent y =  1.51 k0.Z from (IO).  This value is 
consistent with 1.50 obtained by the direct simulation [23]. The properties of the CCA 

should be characterized by the infinite set of exponents or the f - a  spectrum. 
In summary, we found the multiscaling structure of the cluster-mass distribution 

in the simple CCA model. We derived the f-a spectrum of the normalized mass 
distribution. We showed that the growth exponent y was exactly given by y = 1 - a(m). 

q a 
Figure 4, The plots of the exponents '(4) against 4. Figure 5. The f - u  spectrum ofthe duster-mass dis- 

tribution. 
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